Welcome to Regression Alert, your weekly guide to using regression to predict the future with uncanny accuracy.
For those who are new to the feature, here's the deal: every week, I dive into the topic of regression to the mean. Sometimes I'll explain what it really is, why you hear so much about it, and how you can harness its power for yourself. Sometimes I'll give some practical examples of regression at work.
In weeks where I'm giving practical examples, I will select a metric to focus on. I'll rank all players in the league according to that metric and separate the top players into Group A and the bottom players into Group B. I will verify that the players in Group A have outscored the players in Group B to that point in the season. And then I will predict that, by the magic of regression, Group B will outscore Group A going forward.
Crucially, I don't get to pick my samples (other than choosing which metric to focus on). If I'm looking at receivers and Cooper Kupp is one of the top performers in my sample, then Cooper Kupp goes into Group A and may the fantasy gods show mercy on my predictions.
Most importantly, because predictions mean nothing without accountability, I track the results of my predictions over the course of the season and highlight when they prove correct and also when they prove incorrect. At the end of last season, I provided a recap of the first half-decade of Regression Alert's predictions. The executive summary is we have a 32-7 lifetime record, which is an 82% success rate.
If you want even more details, here's a list of my predictions from 2020 and their final results. Here's the same list from 2019 and their final results, here's the list from 2018, and here's the list from 2017.
The Scorecard
In Week 2, I broke down what regression to the mean really is, what causes it, how we can benefit from it, and what the guiding philosophy of this column would be. No specific prediction was made.
In Week 3, I dove into the reasons why yards per carry is almost entirely noise, shared some research to that effect, and predicted that the sample of backs with lots of carries but a poor per-carry average would outrush the sample with fewer carries but more yards per carry.
In Week 4 I discussed the tendency for touchdowns to follow yards and predicted that players scoring a disproportionately high or low amount relative to their yardage total would see significant regression going forward.
In Week 5, I revisited an old finding that preseason ADP tells us as much about rest-of-year outcomes as fantasy production to date does, even a quarter of the way through a new season. No specific prediction was made.
In Week 6, I explained the concept of "face validity" and taught the "leaderboard test", my favorite quick-and-dirty way to tell how much a statistic is likely to regress. No specific prediction was made.
In Week 7, I talked about trends in average margin of victory and tried my hand at applying the concepts of regression to a statistic I'd never considered before, predicting that teams would win games by an average of between 9.0 and 10.5 points per game.
In Week 8, I lamented that interceptions weren't a bigger deal in fantasy football given that they're a tremendously good regression target, and then I predicted interceptions would regress.
In Week 9, I explained why the single greatest weapon for regression to the mean is large sample sizes. For individual players, individual games, or individual weeks, regression might only be a 55/45 bet, but if you aggregate enough of those bets, it becomes a statistical certainty. No specific prediction was made.
In Week 10, I explored the link between regression and luck, noting that the more something was dependent on luck, the more it would regress, and predicted that "schedule luck" in the Scott Fish Bowl would therefore regress completely going forward.
In Week 11, I broke down the very important distinction between "mean reversion" (the tendency of players to perform around their "true talent level" going forward, regardless of how they have performed to date) and "gambler's fallacy" (the idea that overperformers or underperformers are "due" for a correction).
In Week 12, I talked about how much of a team's identity was really just random noise and small samples and projected that some of the most rush-heavy teams would skew substantially more pass-heavy going forward.
In Week 13, explained why the optimal "hit rate" isn't anywhere close to 100% and suggested that fantasy players should be willing to press even marginal edges if they want to win in the long run.
STATISTIC FOR REGRESSION | PERFORMANCE BEFORE PREDICTION | PERFORMANCE SINCE PREDICTION | WEEKS REMAINING |
---|---|---|---|
Yards per Carry | Group A had 24% more rushing yards per game | Group B has 25% more rushing yards per game | None (Win!) |
Yards per Touchdown | Group A scored 3% more fantasy points per game | Group A has 12% more fantasy points per game | None (Loss) |
Margin of Victory | Average margins were 9.0 points per game | Average margins are 9.9 points per game | None (Win!) |
Defensive INTs | Group A had 65% more interceptions | Group B has 50% more interceptions | None (Win!) |
Schedule Luck | Group A had 38% more wins | Group A had 4% more wins | None (Loss*) |
Offensive Identity | Group A had 12% more rushing TDs | Group A has 8% more passing TDs | 2 |
Two weeks in, our "run-heavy" teams continue to be run-heavy, and they also continue to throw for slightly more touchdowns than they rush for.
Do Players Get Hot?
It's widely acknowledged that succeeding in the fantasy playoffs is largely about securing players who all "get hot" at the right time. But is "getting hot" a real, predictable phenomenon? Certainly, some players outscore other players in any given sample, but any time performance is randomly distributed you'd expect clusters of good games or clusters of bad games to occur by chance alone.
If a player has been putting up better games recently, does that indicate that he's "heating up" and will likely sustain that performance going forward? Or does it just mean that he just happened to string together a couple of good games, but you'd expect he'd be no more likely to do that again? The fantasy community often believes the former, but I'll venture that the truth is much closer to the latter.
Indeed, looking at how a player has performed over the last three, four, or five games is almost always worse than looking at how he's performed over the last nine, ten, or eleven games. As I keep saying around here, large samples are more predictable than small samples. Ignoring half or more of a player's games doesn't give you a better idea of how well that player will perform in the near future; it gives you a worse idea.
Continue reading this content with a PRO subscription.
"Footballguys is the best premium
fantasy football
only site on the planet."
Matthew Berry, NBC Sports EDGE